
Bringing SIMULATION to the 5th DIMENSION…

J E F F R E Y S . S T E I N M A N , P H . D .
P R E S I D E N T & C E O , W A R P I V T E C H N O L O G I E S , I N C .

J E F F R E Y . S T E I N M A N @ W A R P I V . C O M ,
(8 5 8) 5 3 1 - 0 6 4 3

WARPIV KERNEL
HIGH LEVEL OVERVIEW OF THE PARALLEL AND DISTRIBUTED

COMPUTING CAPABILITIES OF THE WARPIV KERNEL

NASA PHASE I SBIR EFFORT
TECHNOLOGIES FOR LARGE-SCALE NUMERICAL SIMULATION

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 1

Advanced Modeling & Simulation (AMS) Seminar Series
NASA Ames Research Center, January 28th, 2021

BACKGROUND

•Much of this work began at JPL/Caltech from 1988-1996
• Hypercube project supporting the Strategic Defense Initiative (Star Wars – now Missile Defense)
• Optimistic parallel discrete-event simulation (TWOS, SPEEDES, 5 NASA patents, 80 papers, etc.)

• The work moved to industry in 1996 where SPEEDES was used on numerous
mainstream simulation programs for the DoD
• Wargame 2000, Joint Modeling And Simulation System (JMASS), Joint Simulation System (JSIMS), Extended

Air Defense Test Bed (EADTB), etc.
• But the multicore computing revolution stalled (federations dominated)… UNTIL NOW!

•WarpIV Kernel began in 2001 as the replacement for SPEEDES and is being used by
numerous DoD simulation programs
• ITASE (DIA), SAFE-SiM (DARPA), MDEM (MDA), AFSIM (Air Force), and growing…

•Goals of this NASA Phase I SBIR Effort
• Bring new technologies to NASA for large-scale numerical simulations involving both (1) space science

and (2) space missions with a secondary goal of integrating these domains
• Provide technologies and tools that will attract new HPC users (e.g., build simulations on multicore

laptops and desktops, and then seamlessly move to HPC platforms to scale up when needed)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 2

SCIENCE & TECHNOLOGY

• Science
• Model developers, verification and validation of models, users of models, and analysts who study

the results of simulation outputs

• Technology
• Developers of high-speed communication services, simulation engines, modeling frameworks,

software utilities, graphical displays, data logging, playback, and cataloging systems to support
data mining, etc.

•Analogy – Astronomers (scientists) and Telescope makers (technologists)…
• Breakthroughs in technology always enables better science…

• R&D is performed in both Science & Technology
• We want to work with you on HPC technology and tool development for the WarpIV Kernel
• We want to work with you on space science and mission modeling efforts using our technology

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 3

AGENDA

• The WarpIV Kernel Open-Source Code Base
• Communications

• High Speed Communications, Client/Server ORB, Grid Computing, Optimization Engine, Parallel Application Launching

• Optimistic/Conservative Parallel Discrete-Event Simulation (PDES) Engine with Flow Control
• Modeling Framework Dramatically Reduces Lines of Code for Building Complex Models

• Event Types, Process Model, Composable Models, Model Editor with Code Generation, Scenario Specification, Publish and
subscribe data distribution, Interest Management with Hierarchical Grids, Cognitive Modeling Constructs

• Large Assortment of Software Utilities
• Federations and the High-Level Architecture (HLA)

• High-Performance Computing Run-Time Infrastructure (HPC-RTI), Local RTI Component Proxy (LrcProxy) Framework, External
Modeling Framework (EMF) – Can be used to parallelize a legacy simulation by self-federating

• Bit Compressed Parallel and Distributed Data Logging
• Performance Tools

• Critical Path Analysis, Software Profiling, Built-In Event-Processing Instrumentation, Communication Latencies

• Cross-Platform Widget Set for Building GUIs, 3D/2D Visualization, and Analysis
• Work performed on this Phase I NASA SBIR Effort

• Discrete-event vs. time stepping for n-body gravitational problems
• Planetary Rings, Space Debris in a Missile Defense Scenario, Ellipsoidal Gravity, RF Propagation

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 4

THE WARPIV KERNEL CODE BASE

• Supports a large variety of parallel and distributed computing applications
• Emphasis on modeling & simulation

•More than 825,000 lines of (mostly) C++ code
• Cross-platform (Linux, Mac OS X, other versions of UNIX, Windows)
• Fully self-contained with no 3rd party dependencies
• Easy to build and supports all mainstream compilers
• Builds into a single library with all header files organized in one directory

• Free and open source with some restrictions on distribution
• The United States government has an unrestricted license to the WarpIV Kernel code base
• No classified data or algorithms in the software distribution (no ITAR restrictions)
• Categorized as EAR-99 by the Department of Commerce (no export license required)
• No proprietary data-rights claims or patents on the WarpIV Kernel software
• WarpIV Technologies, Inc. maintains distribution rights for commercial use

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 5

LAYERED ARCHITECTURE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 6

Operating System Services
Threads and Inter-Process Communication Abstractions

General Purpose Software Utilities

ORB Client/Server Network Services
Internal High-Speed Communications

Rollback Framework
Rollback Utilities

Parallel and Distributed Data Logging Services
Standard Template Library (STL) & Object-Oriented Persistence

Event Management Services for Supporting the SimEngine
Optimistic and Conservative Time Management

Standard Modeling Framework to Promote Composability and Rapid Model Development
Distributed Simulation Management Services (Pub/Sub Data Distribution for Objects and Interactions)

External Modeling
Framework (EMF)

LVC & Web-based
Gateways

Composable Model & Service Packages (MDEM)
Composable Systems

Composable Application

Physics, Engineering,
Engagement, Mission,

Campaign

Legacy Simulation Engine
& Models

Legacy HLA
Federate

LVC – Federation
& Enterprises

External Systems,
Visualization, & Analysis

Cognitive Architecture Framework (Thought Triggering, Mission Goals, Intelligent Behavior)

External Comm.Cloud Services, PAL, Grid Computing, Optimization Engine
SOM/FOM Data Translation Services to Support Integration with Arbitrary Object Models

HPC-RTI & LrcProxy
(HLA Bridge)

Middleware & Code
Generation (Engine Bridge)

Legend:
OS/IPC Services

User APIs

Framework

LVC

Middleware

Application Code

New DOC Ruling: EAR-99
International distribution

No export license required

WarpIV Kernel - NASA Phase I SBIR Effort 7

HIGH SPEED COMMUNICATIONS

1/28/21

COMMUNICATIONS

• High Speed Communications
• Better performance than MPI and much easier to use
• 32M short messages per second on a NUMA 32-core AMD Ryzen Threadripper

• Client/Server Object Request Broker (ORB)
• Provides reliable network communications (TCP/IP) between clients and servers
• High-level abstraction to invoke remote methods on server objects via defined interfaces
• Supports asynchronous, functions, and two-way services

•Grid Computing
• Tasker farms work to Workers with built-in fault tolerance

•Optimization Engine
• Builds on the Grid-Computing framework to intelligently guide concurrently executing simulations towards

a goal (optimization, Nash Equilibriums, formation of response surfaces, etc.)

• Parallel Application Launching (PAL)
• Launches homogeneous or heterogeneous applications on one or more machines in a robust and

repeatable manner

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 8

• Startup and Terminate
• Forks/spawns local processes
• Manages shared memory and network connections

• Synchronized Wall Clock Services
• Normally performed at startup
• The wall time is set to 0 at startup

• Miscellaneous services
• Node info, shared memory tuning parameters, etc.

• Synchronization
• Hard and fuzzy barriers

• Global reductions
• Min, Max, Sum, Product, etc.
• Mean and Standard Deviation for Node Statistics
• Can support user-defined operations

• Synchronized data distribution
• Broadcast, Scatter, Gather, Form Vector/Matrix

• Asynchronous Message Passing
• Unicast, destination-based multicast, broadcast
• Up to 512 message types
• Automatic or user-defined memory allocation

• Coordinated Message Passing
• Patterned after the Hypercube Crystal Router
• Synchronized operation guarantees that all

messages are received by all nodes
• Unicast, destination-based multicast, broadcast
• Automatic or user-defined memory allocation

• ORB Services
• Remote asynchronous method invocation with user-

specified interfaces

HIGH SPEED COMMUNICATION SERVICES

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 9

WARPIV HSC VS. MPI BENCHMARKS

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 R

at
io

 N
at

iv
e

/ M
PI

Number of Nodes

Throughput for Short Messages

Async Unicast Async Multicast Async Broadcast Coord Unicast Coord Multicast Coord Broadcast

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 R

at
io

 N
at

iv
e

/ M
PI

Number of Nodes

Global Reduction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 R

at
io

 N
at

iv
e

/ M
PI

Number of Nodes

Fuzzy Barrier

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 R

at
io

 N
at

iv
e

/ M
PI

Number of Nodes

Bandwidth for Large Messages

Async Unicast Async Multicast Async Broadcast Coord Unicast Coord Multicast Coord Broadcast

APPROACHES TO PARALLELISM

•Distributed net-centric computing
• Programs communicate through a network interface

• TCP/IP, UDP/IP, Multicast, HTTPS, SOA and Web Services, Client/Server, CORBA, Federations, Enterprises, Grid
Computing, etc.

• Parallel multicore computing on a single machine
• Processors directly communicate through high speed mechanisms

• Threads, shared memory, reliable message passing

Process

Sequential
Program

Multi
Threaded

Process Process

Process Process

Shared
Memory

Process Process

Process Process

Message
PassingProcess

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 11

SHARED MEMORY AND DISTRIBUTED COMPUTING

Shared Memory Server

Parallel
Application

Local Msg Server

Machine 1

Shared Memory Server

Parallel
Application

Local Msg Server

Machine 2

Shared Memory Server

Parallel
Application

Local Msg Server

Machine 3

Shared Memory Server

Parallel
Application

Local Msg Server

Machine 4

Shared Memory Server

Parallel
Application

Local Msg Server

Machine 5

Central
Server

• Shared Memory Server creates and deletes shared memory
segments for the local nodes running the parallel application
when the high-speed comm starts up and later terminates. It kills
all nodes on the machine if a node crashes (i.e., disconnects
unexpectedly).

• All nodes on a machine send their remote messages first to their
Local Msg Server (low overhead), which then forwards the
message across the network to its destination. If more than one
remote node needs the message (multicast or broadcast), it is
sent once to the machine and then disseminated to the other
receiving nodes through shared memory.

• Central Server handles barrier synchronizations and global
reductions. If a node unexpectedly disconnects, it sends a kill
message to local node 0 on all other machines, which causes the
node to exit, which then causes its shared memory server to kill all
the other nodes.

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 12

GLOBAL SYNCHRONIZATIONS AND REDUCTIONS

0

1

2

3

4

5

6

7

8

9

10Node 0

Node 1

Node 2

Node 3

Node 4

Example of a global synchronization on five processing nodes

Stage 0 Stage 1 Stage 2 Stage 3

Wait Until
Completed

Final
Result

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 13

MESSAGE SHARED MEMORY STRUCTURE

Slot Mgr

Slot Mgr

Slot Mgr

Slot Mgr

Slots (circular buffer)

Node 0

Node 1

Node 2

Node 3

Tail

Head

Output Messages (circular buffer)

One shared memory block per node
Slots manage incoming messages for each node

Circular buffer manages outgoing messages

Steps in sending a message:
1. Write header and message to head in senders

output message buffer.

2. Write index of msg header in the receiving node
shared memory slot for the senders node.

Steps in receiving a message
1. Iterate over slot mgrs to find messages

2. Read message using index in the slot

3. Mark the header as being read

Potential technical issues
Cache coherency

Instruction synchronization

Msg Header

Unicast Message

Msg Header

Broadcast Message

Msg Header
Msg Header

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 14

CIRCULAR BUFFER HEAD AND TAIL INDICES

Circular
Buffer

Tail

Head

Circular
Buffer

Head

Tail

Tail chasing Head Head chasing Tail

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 15

MESSAGE AND HEADER FORMATS

Header 1
Header 2

Header n

Message
Contents

int NumBytes

int Index

unsigned short Packet

unsigned short NumPackets
char DummyChar0
char DummyChar1
char DummyChar2
char ReadFlag

M
es

sa
ge

 F
or

m
at

He
ad

er
 F

or
m

at

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 16

WarpIV Kernel - NASA Phase I SBIR Effort 17

OPTIMISTIC PARALLEL DISCRETE-EVENT SIMULATION (PDES) ENGINE
WITH FLOW CONTROL

1/28/21

Parallel Time Stepping

InitializeState();

double endTime = 100.0;
double step = 1.0;

for (double time=0.0; time<=endTime; time+=step) {

Compute();

Communicate();

…

}

Sequential Discrete Event Simulation

InitializeState();

ScheduleInitialEvents();

double endTime = 100.0;

while (eventQueue->GetNextEventTime()<=endTime) {

double time = EventQueue->GetNextEventTime();

Event *event = EventQueue->PopNextEvent();

event->Process(time);

event->InsertNewEvents(EventQueue);

}

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 18

TIME STEPPING VS. DISCRETE EVENT

SEQUENTIAL DISCRETE EVENT SIMULATION

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 19

T0

Global
State

T1

T2

Tn

Ti

Tj

Insert

Process

Modify
State

Schedule
new events

Event
Queue

Pop

CONSERVATIVE PARALLEL DISCRETE EVENT SIMULATION

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 20

T0

Local
State

T1

T2

Tn

Ti

Tj

Insert

Process

Modify
State

Schedule
new events

Event
Queue

Pop

Msg

New events scheduled for remote
nodes must have time tags greater
than or equal to the current event

time plus lookahead

Collection of
Composites

residing on this
node

LOOKAHEAD & CONSERVATIVE METHODS

Last Processed Event
at time TA

Node 0

Node 1

Last Processed Event at
time TB ≤ TA + LA

New Event
Scheduled at
time TA + LA

Simulation
Time

Unprocessed Events

Unprocessed Events

Lookahead: Promise between nodes to never schedule remote events with
time tags less than their current time + Lookahead

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 21

OPTIMISTIC PARALLEL DISCRETE EVENT SIMULATION

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 22

SimObjSimObj

T0

Composite
State

T1

T2

Tn

Ti

Tj

Insert

Process

Modify
State

Schedule
new events

Pending
Events

Pop

Msg

T-1T-2T-3T-m

Uncommitted Events

Scheduler

Rollback
Items

Rollbacks (a) undo state changes and (b)
send antimessages to retract generated
messages that should not have been sent

CONSERVATIVE VS OPTIMISTIC METHODS

•Conservative algorithms impose one or more constraints
• Object interactions limited to just “neighbors” (e.g., Chandy-Misra)
• Object interactions must have artificial delays (e.g., lookahead)
• Object interactions follow FIFO constraint

•Optimistic algorithms impose no constraints but require a more
sophisticated engine
• Support for rollbacks (and advanced features for rollforward)
• Require flow control to provide stability
• Optimistic approaches can support real-time applications better than conservative approaches...

• The most important thing is for applications to develop their models to
maximize parallelism
• Simulations will not execute in parallel faster than their critical path

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 23

E

F

D

A

B

C

G

TOPOLOGY BASED SYNCHRONIZATION

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 24

FIFO CONSTRAINT

DFIFO Input Q

Scheduled input
events and time

from C

Self-scheduled
events and time

from D

Scheduled input
events and time from E

Scheduled output
events and time to F

Scheduled output
events and time to B

FIFO

FIFO

FIFO
Input
Q

FIFO
Input
Q

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 25

OPTIMISTIC SIMULATION AND GLOBAL VIRTUAL TIME

•Global Virtual Time (GVT) is a concept that defines the progress of the
parallel simulation. It is defined as the minimum time-tag of:
• Unprocessed (pending) event
• Unsent message
• Message or antimessage in transit

• Theoretically, GVT changes as events are processed
• In practice, GVT is updated periodically by a GVT update algorithm

• To correctly provide time management services to the outside world, GVT
must be updated synchronously between internal nodes
• Frequent GVT updates supports tight interactions, but can also introduce overheads

• Processed events with time tags less than GVT are committed once GVT is
updated
• Memory to capture rollbacks (e.g., state changes, messages, I/O, etc.) can be deallocated

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 26

ROLLBACKS OCCUR WITH OBJECTS
(NOT BY NODES)

Obj 0
Obj 1
Obj 2
Obj 3
Obj 4

Obj 5
Obj 6
Obj 7
Obj 8
Obj 9

Simulation
Time

Node
0

Node
1

GVT

LVT1

LVT0

Straggler causes
one rollback

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 27

TIME WARP & STRAGGLER MESSAGES

Simulation Object

Straggler Message

Simulation Object

Next Event to Process

Antimessages

Events Rolled Back

Last Event Processed

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 28

TIME WARP & ANTIMESSAGES

Simulation Object

Antimessage

Simulation Object

Event Canceled

Antimessages

Events Rolled Back

Last Event Processed

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 29

TIME WARP INSTABILITIES

20,00010,0000
0

10

20

30

40

50

60

70

80

90

100

Time Warp

Breathing Time Buckets

Simulation Time

C
PU

 Ti
m

e

Proximity Detection (32 Nodes)
259 Ground Sensors
1099 Aircraft

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 30

TIME WARP INSTABILITIES

20,00010,0000
0

100,000

200,000

300,000

400,000

500,000

Simulation Time

Ev
en

ts
 a

nd
 R

ol
lb

ac
ks

Processed
Events

Time Warp
Rollbacks

Breathing Time Buckets
Rollbacks

Proximity Detection (32 Nodes)
259 Ground Sensors
1099 Aircraft

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 31

THE EVENT HORIZON

Cycle 3

Generated Events

Pending Events

Simulation
Time

Pending Events

Generated Events

Simulation
Time

Cycle 1

Simulation
Time

Pending Events

Generated Events

Cycle 2

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 32

BREATHING TIME BUCKETS

Local Event
Horizon 0

Local Event
Horizon 1

Event
Horizon

Start Of
Cycle

Node 0
Events

Node 1
Events

Simulation
Time

Generated
Messages

Generated
Messages

Throw Away Messages
if Necessary

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 33

Additional Optimizations
• Asynchronous broadcasts
• Direct insertion of local events

BREATHING TIME WARP

•Opposite problems when comparing Breathing Time Buckets and Time
Warp
• Imagine mapping events into a global event queue
• Events processed by runaway nodes have good chance of being rolled

back
• Should hold back messages from runaway nodes

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 34

BREATHING TIME WARP PROCESSING CYCLE

• Example with four nodes
• Time Warp: Messages released as events are processed
• Breathing Time Buckets: Messages held back
• GVT: Flushes messages out of network while processing events
• Commit: Releases event horizon messages and commits events

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 35

Time Warp Breathing Time Buckets GVT Commit

Time Warp Breathing Time Buckets GVT Commit

Time Warp Breathing Time Buckets GVT Commit

Time Warp Breathing Time Buckets GVT Commit

Wall Time

ABSTRACT TIME REPRESENTATION

• Abstract representation of logical time uses 8 tie-breaking fields to guarantee
unique time tags
• double Time Simulated physical time of the event
• int Priority1 First user settable priority field
• int Priority2 Second user settable priority field
• int Counter Event counter of the scheduling SimObj
• int UniqueId Globally unique Id of the scheduling SimObj
• int AuxCounter Only set during multi-event transactions
• int AuxUniqueId Only set during multi-event transactions
• double SuperCounter Unique counter for event instances (for bookkeeping)

•Guaranteed logical times
• The OpenUTF automatically increments the SimObj event Counter to guarantee that each SimObj

schedules its events with unique time tags
• Note, Counter may “jump” to ensure that events have increasing time tags
• SimObj Counter = max(SimObj Counter, Event Counter) + 1

• The OpenUTF automatically stores the UniqueId of the SimObj in event time tags to guarantee that events
scheduled by different SimObjs are unique

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 36

EVENT MANAGEMENT

• Standardized processing cycle interfaces to support any time management
algorithm
• Uses virtual functions on scheduler to specialize processing steps
• Supports reentrant applications (e.g., HPC-RTI, graphical interfaces, etc.)

• Highly optimized internal algorithms for managing events
• Optimized and flexible event queue infrastructure
• Native support for sequential, conservative, and optimistic processing
• Internal usage of free lists to reduce memory allocation overheads
• Optimized memory management with high speed communications

• Statistics gathering and debug support
• Rollback and rollforward application testing
• Automatic statistics gathering (live critical path analysis, message statistics, event processing and

rollbacks, memory usage, profiling, etc.)
• Merged trace file generation for debugging parallel simulations that can be tailored to include

rollback information, performance data, and user output

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 37

MAIN EVENT PROCESSING LOOP

Execute {
Initialize
Process Up To (End Time)
Terminate

}

Process Up To (Time) {
while (GVT < Time) {

Process GVT Cycle
}

}

main {
Execute

}

Initialize {
Launch processes
Establish Communications
Construct/Initialize SimObjs
Schedule Initial Events

}

Terminate {
Terminate All SimObjs
Print Final Statistics
Shut Down Communications

}

Process GVT Cycle {
Process Events & User Functions
Update GVT
Commit Events
Print GVT Statistics

}

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 38

BASIC EVENT MANAGEMENT CLASSES

Logical
Process

Logical Process
Manager

Master Logical
Process Manager

Event

Event
Message

Event
Manager

*

*

*

*

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 39

EVENT MANAGEMENT CLASS RELATIONSHIPS

Event

Macro Generated
Input Message

Macro Generated
Output Message

Event
Message

User
Defined
Event

LogicalProcess

SimObj Logical Process
Manager

User Defined
SimObj

SimObj
Manager

*

* 1

Macro Generated
SimObj Manager

Macro
Generated

Event

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 40

LOCAL EVENT MANAGEMENT

Processed Events
Doubly Linked List

Future Pending Events
Priority Queue

Simulation Time
Rollback Queue

Simulation Object State Variables

Event Messages

Scheduler: A priority queue of Logical Processes (i.e., Simulation
Objects) ordered by next event time

Simulation
Time

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 41

ROLLBACK MANAGER AND ROLLBACK ITEMS

• Rollback Manager
• Manages list of rollbackable items that were created as rollbackable operations are performed
• Each event provides a rollback manager

• Global pointer is set before the event is processed
• Rollbacks are performed in reverse order to undo operations

• Rollback Items
• Each rollbackable operation generates a Rollback Item that is managed by the Rollback Manager

• Rollback utilities include (1) native data types, (2) memory operations, (3) container classes, (4) strings, and (5)
various misc. operations

• Rollback Items inherit from the base class to provide four virtual functions
• Rollback, Rollforward, Commit, Uncommit

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 42

WarpIV Kernel - NASA Phase I SBIR Effort 43

MODELING FRAMEWORK

1/28/21

MODELING FRAMEWORK HIGHLIGHTS

•Composable Modeling
• Composites, which contain hierarchical systems of models, are automatically

constructed/initialized and distributed across nodes by the WarpIV Kernel at startup using a
scenario file

• Models within a composite are co-located (i.e., reside on the same node and evolve in time
together as a unit), which means they can share data and involve each other’s methods.
However, models never know about the existence of other models, which means special
abstractions are required (data registry and abstract interfaces)

• Models residing within different composites interact and share data through publish and subscribe
services that still maintain the idea that models know nothing about the existence of other models.

• Event types
• The WarpIV Kernel Modeling Framework supports a wide variety of event types between co-

located and remote models, but the most common type of event is a local event, which is often
made to be re-entrant using “Process Model” constructs that support WAIT, WAIT_FOR, Resources,
Interrupts, and ASKS

• Events are scheduled with code-generated interfaces and processed as methods invoked on
objects with up to 20 arguments and optional variable-length data

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 44

ABSTRACTION OF INTERFACES AND DATA SHARING
WITHIN COMPOSITES

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 45

Composite
(e.g., Battlefield Entity)

System
Composed of Models

Sub-System
Composed of Models

Sub-System
Composed of Models

Sub-Sub-System
Composed of Models

Sub-Sub-System
Composed of Models

Data
Registry

Abstract
Interface
Manager

• Models dynamically
register methods to handle
abstract interfaces

• Abstract Interface
Manager calls registered
methods when invoked or
scheduled

• Abstract Interface
Manager can also “wire”
specific inputs and outputs
between models as
specified within systems

• Models register data
by name and tag

• Models retrieve data
by name and tag

• Namespaces resolve
conflicts within
systems and sub-
systems

Standards-based Publish and Subscribe Data Distribution techniques are required for sharing data and
supporting interactions between Composites within the OpenUTF and legacy systems

COGNITIVE MODELING

•Cognitive Thought Triggering
• Thoughts are represented as methods on objects that are triggered whenever any of its input

stimulus variables are modified
• Thoughts can modify output variables that are stimulus to other thoughts, which triggers cognitive

thinking in a cascading manner
• Feedback loops are supported, which model thought refinement
• Thought termination occurs when there are no more thoughts, or after a maximum number of

thoughts have been triggered

•Goals and Task Behaviors
• Goals are dynamically prioritized and mapped to Task Machines that dynamically carry out a series

of tasks that are necessary to accomplish the goal (e.g., GPS driving directions from point A to point
B when road conditions might change)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 46

COGNITIVE MODELING & THOUGHT TRIGGERING

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 47

RBR

Outputs

Inputs

W X Y Z

B CA
Emotion Based Reasoning

Training Based Reasoning

Rule Based Reasoning

Predictive Based Reasoning

Legend

Game Theory (Nash Equilibrium)

Optimized Based Reasoning

Stimulus (Short Term Memory)

Thoughts are methods that are triggered when
inputs (stimulus) change, which can produce
outputs (stimulus) that trigger other thoughts

GOAL-ORIENTED TASK MACHINE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 48

Goal Manager

Task Machine

Task
Create

Initialize

Perform Task

Terminate (Sets Interrupt)

Loop over Tasks: Repeat until End,
Fail, or Interrupted by Goal

Manager
Abstract Time

Elapses

Terminate (Sets Interrupt)

Loop over Goals:
Repeat until all

goals are
completed

Create Cognitive Model…

Cognitive Model…

Cognitive Model…

Delete

Create

Create

Create

Oversight

Oversight

Oversight

Delete

TASK MACHINE TRIES TO GO FROM THE START TASK TO
THE END TASK USING THE SHORTEST PATH

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 49

Start EndMove To
Location

Attack
Targets

Avoid
Conflict

Defend Self

Retreat

Destroyed

Fail

T1 T2 T3

T4

T5

T6 T7

T8

T9

T10

T11

Tasks are completely encapsulated from one another…

WarpIV Kernel - NASA Phase I SBIR Effort 50

LARGE ASSORTMENT OF SOFTWARE UTILITIES

1/28/21

LARGE ASSORTMENT OF SOFTWARE UTILITIES

• Software Utilities
• Math utilities for vector operations, matrices, statistical algebra, curve fitting, closest approach

calculations, multivariable optimization, unit conversions, constants, rotations, etc.
• Motion algorithms and coordinate system transformations (ECI, ECR, Round Earth, WGS84)
• Container classes and other data structures
• Dynamic memory management with object factories
• Interpreter of string-based mathematical expressions
• Data parsers (Config file format, Run Time Class format, XML, CSV, etc.)
• Random number generation (based on the Mother of All Random Number Generators)
• Tracking algorithms (various Kalman Filters, chi-squared track fusion, etc.)
• Error handling
• Signal processing (FFT, WAV file processing for audio, etc.)
• Basic Simulation Engine for supporting embedded simulation or representing test federates
• Dynamic routing algorithms
• Network-safe data types
• Artificial Intelligence algorithms (e.g., neural networks, genetic algorithms, etc.)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 51

WarpIV Kernel - NASA Phase I SBIR Effort 52

FEDERATIONS

1/28/21

FEDERATIONS AND THE HIGH-LEVEL ARCHITECTURE (HLA)

• HLA is a 25-year-old standard that is heavily used by the Department of Defense
M&S community
• A federation is group of simulations (called federates) that execute (and evolve time) together as a

distributed enterprise
• Supports distributed objects and interactions (using publish and subscribe services) between the

federates that can operate in both real-time and logical-time modes
• Defined as (1) a Run Time Infrastructure (RTI) that specifies interfaces, (2) a set of rules that all federates

must follow, and (3) an object model that all federates agree upon for representing (a) objects and their
attributes and (b) interactions and their parameters

• The WarpIV Kernel Provides 2 RTIs (with a 3rd RTI in the future) that are designed for
high performance computing in parallel and distributed environments
• High-Performance Computing Run Time Infrastructure (HPC-RTI) and the LrcProxy Framework are

designed to support large-scale federations executing in parallel
• Important use case is to self-federate a legacy simulation to obtain scalable performance
• External Modeling Framework (EMF) is designed to support remote federates that might dynamically

join/resign while the simulation is running
• Each of these RTIs are provided with a unified middleware framework that greatly simplifies the

federation process while maintaining scalable performance
1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 53

HPC-RTI FOR CONSTRUCTIVE FEDERATIONS WITH
COMPOSABLE MODELS & GUARANTEED REPEATABILITY

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 54

Conservative

Optimistic

HPC
RTI

HLA
Federate

HPC
RTI

Sim
Engine

Sim
Engine

HPC
RTI

HLA
Federate

Sim
Engine

HPC
RTI

HLA
Federate

High-Speed
Communication

Events are processed optimistically inside the
simulation engine, but conservatively by each
HLA Federate. Federation execution is
guaranteed to be repeatable.

Legacy
M&S

Composable
Models

Bridged
Interoperability

HLA
Federate

Sim
Engine

Each Sim Engine, HPC-RTI, and HLA Federate
combination operate as a single process. Multiple
instances execute on networks of multicore machines.

Can be synced (or scaled) to wall clock
for real-time operation

Could map other
distributed technical
framework interfaces
to the HPC-RTI

Unification…
• Composable Models
• Distributed Federations

LOCAL RTI COMPONENT (LRC) PROXY COLLAPSES THE
COMPUTATIONAL FOOTPRINT OF A FEDERATION

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 55

Federate

Federate

Federate

Federate

LRC
RTI

LRC
Proxy

LRC
Proxy

LRC
Proxy

LRC
Proxy

Federate

Federate

Federate

Federate

LRC
RTI

LRC
Proxy

LRC
Proxy

LRC
Proxy

LRC
Proxy

Machine Machine

HLA

WarpIV Kernel
HPC-RTI

Federate
EMF-RTI

COORDINATING TIME REQUESTS AND GRANTS WITH
MESSAGE SENDING AND RECEIVING

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 56

Federate LRC

Request time Request time message

tick() Call select() and
then go to sleep

(ß Forward messages)
Grant Time message

• Wake up from select()
• Process time grant message
• Call Federate Ambassador time grant method
• Set flag to return from server function
• Return from tick

Compute up to the time grant
à send messages…

Loop

Time
Request

Tree

Time
Barrier
Tree

Has a…
RTI

WarpIV Kernel - NASA Phase I SBIR Effort 57

BIT COMPRESSED PARALLEL AND DISTRIBUTED DATA LOGGING

1/28/21

SUMMARY OF THE BIT COMPRESSED DATA LOGGER

•WarpIV bit-compressed data logger
• Very easy to use interface
• More than 100 data types and bit resolutions supported
• Methods for outputting messages and errors
• Advanced compression algorithms (including prediction techniques)
• Filtering based on string expressions that are parsed and evaluated at run time
• Compression factor of more than 23 observed in missile defense analysis data
• Tools for printing log files, comparing log files, and printing trace files
• General-purpose framework for reading and analyzing log files with unstructured data
• Log files can be password encrypted for improved Information Assurance security
• Integrated with the Analyzer and Visualizer tools
• Foundation for cataloging log files with metadata for big data data mining
• Already in heavy use (repeatability testing in the HPC-RTI, federate behavior data collection for

performance predictions, summary of federation performance, optimistic parallel data logging in
MDEM, trace file generation for debugging, federate data logging, etc.)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 58

FUNDAMENTALS OF DATA LOGGING

• Logged data is always packed in time-stamped records
• Time stamps can be logical time or real time
• A new record is automatically created when time advances and data is logged
• Log files are always stored as bit-compressed records sorted in ascending time order
• Logged data can be unstructured and/or structured and occur without any prescribed order
• Interfaces are provided to read back and access the data

• Each logged data item is a highly compressed triplet
• <symbol name, data type, value>
• Symbol names are bit coded and maintained in a dictionary along with their data type
• Values are bit compressed

•Writing log files
• Each node, federate, or application can write their own log files
• Logged data is automatically time-merged and written by one of the federates (logical time)
• Logged data is sent to a server where it is automatically time-merged and written (real time)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 59

DATA COMPRESSION OF FUNDAMENTAL TYPES

• Integer data types (32-bit integer, 16-bit short, 8-bit char) uses Huffman coding scheme to
code the number of bits required to store values
• Favors small values – e.g., integer value 0 requires only 2 bits of storage

• Floating point data types (64-bit double, 32-bit float) uses a variety of compression
techniques to reduce the number of bits
• Customized floating-point formats for float16, float20, float24, float28, float32, float36
• Ratios (values between 0 and 1) supported as ratio8, ratio16, ratio24, and ratio32
• Angles (values between 0 and p, or 0 and 2p) supported as angle8, angle16, angle24, angle32

• Boolean stored as a single bit for true or false
• Strings are always bit coded

• Huffman (we know all the symbols in advance
• Dynamically generated Bit Codes discovered during run time
• Coded Strings convert to bit-coded format strings followed by integer or floating-point values

• Time
• Years, Weeks, Days, Hours, Minutes, Seconds, Milliseconds, Microseconds, Nanoseconds)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 60

DATA COMPRESSION OF FUNDAMENTAL TYPES
CONTINUED

• Unit vectors stored as 3 sign bits and two ratios of selectable resolution
•General vectors stored as a unit vector with selectable resolution and an

amplitude with a matching resolution
• Buffers with compression
• Repeated bytes containing all 0 or 1 bits
• Repeated bits
• 4-bit Huffman coding

• Continuous integer and double arrays at various bit resolutions using difference,
linear, or quadratic predictions to reduce the number of bits required to store
values (like algorithms used for compressing audio)
• Text using a combination of key words and Huffman coding of ASCII characters
• Simulation time and Wall Time (note, WarpIV provides a synchronized wall clock

service to obtain absolute times across a parallel and distributed execution)
• Stream I/O operators for logging software-generated messages
• Named Collections (critical for supporting analysis)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 61

NAMED COLLECTIONS

•A collection of data values that are logged together in time as a unit
• Named collections have a name for the collection that identifies its type, an integer ID to record

who is writing the data, and then a set of data values <symbol name, type, value>
• Because each named collection type always writes the same set of data, it is not necessary to

store their symbol names after the first time.
• Internal data structures maintain a history of the previous 3 named collections for each ID to

support native, difference, linear, and quadratic predictions
• This provides huge data size reductions for values that are generally continuous (e.g., [X, Y,X] values

representing a trajectory, inflight time with fixed steps, numbers of assets that changes slowly, etc.)
• Named collections have been designed to work with a string-based mathematical interpreter that

parses expressions (that evaluate to true or false) using data in the named collection and attributes
of published/subscribed objects to determine if the data should be logged (i.e., a smart filter to
eliminate logging unnecessary data)

• Named collections have been designed (but not yet integrated) to work with the Analyzer GUI to
perform mathematical analysis of logged data (time plots, scatter plots, histograms, curve fitting,
filtering, forming new values, etc.)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 62

EXAMPLE OF A NAMED COLLECTION

WpNamedCollectionRecord *record;

// Create a Named Collect Record named “Moon”

record = APP_DATA_LOGGER.CreateNamedCollectionRecord(
"Moon",
RELATIVE_ENUM_ID

);

// Set various values in the record

record->SetFloat24("X", x[0], WP_BIT_COMP_LOG_CUBIC);
record->SetFloat24("Y", x[1], WP_BIT_COMP_LOG_ CUBIC);
record->SetFloat24("Lat", pos[0], WP_BIT_COMP_LOG_DIFF);
record->SetFloat24("Lon", pos[1], WP_BIT_COMP_LOG_QUADRATIC);
record->SetFloat24("Alt", pos[2], WP_BIT_COMP_LOG_DIFF);
record->SetFloat24("Speed", speed, WP_BIT_COMP_LOG_DIFF);
record->SetFloat24("R", r, WP_BIT_COMP_LOG_DIFF);

// Log the named collection record.

APP_DATA_LOGGER.LogNamedCollectionRecord(record);

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 63

DATA LOGGING FILE WRITING MODES

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 64

B C

DA

Log
File

Log
File

Log
File

Log
File Node

1
Node

2

Node
3

Node
0

Log
File

Node
1

Node
2

Log
File

Server

Node
3

Node
0

Each federate
independently writes its

own log file

The RTI hosting a federate
merges and saves a single log

file using high speed
communications to internally

transmit/receive records
A network server

merges and saves a
single log file

Sequential

Parallel
Distributed

WarpIV Kernel - NASA Phase I SBIR Effort 65

BIT COMPRESSED PARALLEL AND DISTRIBUTED DATA LOGGING

1/28/21

OUTPUT STATISTICS

Event processing statistics by event type

Id EventName Nproc Ncmtd Tcpu Tcmtd Tmax <Tcmtd> Eff
2 AddFoToSubscribingEntity 15937 9057 0.0927209 0.0545591 5.6001e-05 6.02397e-06 0.588422
7 AddPublisherToPubSubFoMgr 2013 2009 0.00271401 0.00240401 0.000101001 1.19662e-06 0.885777
9 AddSubscriberToEntity 47 9 0.43534 0.069558 0.013913 0.00772867 0.159779

11 AddSubscriberToPubSubFoMgr 3022 3022 0.00270802 0.00270802 2.0001e-05 8.96103e-07 1
14 CreateFoOnFoDistributor 186 72 0.0173842 0.00782107 0.000533001 0.000108626 0.449896
18 DistributeSimpleEvent 76755 68136 4.35311 3.89286 0.000814001 5.71336e-05 0.894271
33 InitSectorMotion 1875 1000 0.27303 0.118492 0.000874001 0.000118492 0.433989
35 LogMoonXY 123 51 0.00289212 0.00137805 9.6001e-05 2.70206e-05 0.476484
36 LogSectorXY 182759 50000 2.20068 0.565441 0.000848001 1.13088e-05 0.256939
37 MoonMotion 13 7 0.00254601 0.000978007 0.000317001 0.000139715 0.384133
67 SectorMotion 619841 536400 1293.34 1118.59 0.006273 0.00208536 0.864886
77 SimpleEvent 9544977 8644190 31.1755 26.0736 0.000958001 3.01632e-06 0.836351
78 SimpleEventLocalSubscribe 2000 2000 0.004839 0.004839 5.9001e-05 2.4195e-06 1
80 SimpleEventRemoteSubscribe 112 112 0.000141112 0.000141112 6.001e-06 1.25993e-06 1
86 TouchEvent 2187 2000 0.00139419 0.001256 1.7001e-05 6.28e-07 0.900883

Event processing totals

Nproc = 10451847
Ncmtd = 9318065
Tcpu = 1331.9
Tcmtd = 1149.38
Tmax = 0.013913
<Tcmtd> = 0.00012335
Eff = 0.862965

Critical path analysis

Critical path time = 14.9359
Processing time = 1149.38
Maximum speedup = 76.9547
Efficiency = 0.862965
Min committed processing time per node = 142.676
Max committed processing time per node = 145.55
Mean committed processing time per node = 143.673
Sigma committed processing time per node = 0.86156

> Exiting

real 3m12.755s
user 3m0.835s
sys 0m10.782s

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 66

PARALLEL SOFTWARE PROFILING

WarpIV Software Profile Utility
Time Mode Wall
Key: PercentTime -> Function() (FileName Line) Time [NumCalls, NumCommittedCalls] <AverageTime> (Overhead, PercentOverhead)

--
58.87% -> Sector::SectorMotion() (AUTO_Sector.C Line 18) 4104.83 [629115, 522864] <0.00652478> (0.072113, 0.00%)

Backtrace:
59.39% WpEvent::ProcessOptCon() (EventManagement/WpEvent.C Line 1077) 4141.6 [1.04077e+07, 9.28432e+06] <0.000397937> (0.434681, 0.00%)
73.11% WpScheduler::OptimisticallyProcessNextEvent() (EventManagement/WpScheduler.C Line 645) 5097.68 [1.21724e+07, 1.21724e+07] <0.000418791> (0.51705, 0.00%)
74.57% WpWarpSpeed::ProcessEvents() (TimeManagement/WpWarpSpeed.C Line 46) 5200.03 [17240, 17240] <0.301626> (0.00102735, 0.00%)
99.94% WpProcessGvtCycle() (Execute/WpExecute.C Line 878) 6968.48 [17240, 17240] <0.404204> (0.000875473, 0.00%)
99.94% WpProcessUpToLogicalTime() (Execute/WpExecute.C Line 145) 6968.5 [8, 8] <871.063> (1.93119e-05, 0.00%)
99.94% WpProcessUpTo() (Execute/WpExecute.C Line 203) 6968.5 [8, 8] <871.063> (3.12328e-05, 0.00%)

100.00% WpExecute() (Execute/WpExecute.C Line 116) 6972.46 [8, 8] <871.558> (4.76837e-05, 0.00%)

Self/Children:
5.74% Self 400.394 [629115, 522864] <0.000636441> (0.072113, 0.00%)

26.87% WpTransObj::GetDynamicPosition() (SomFomTranslation/WpTransObj.C Line 3578) 1874.15 [1.2749e+09, 1.05984e+09] <1.47003e-06> (50.529, 0.72%)
15.56% WpTransObj::GetDouble() (SomFomTranslation/WpTransObj.C Line 1476) 1085.4 [1.2749e+09, 1.05984e+09] <8.5136e-07> (50.5113, 0.72%)
5.59% WpFoMgr::GetNextRemoteFo() (DistSimMgt/WpFoMgr.C Line 1128) 389.97 [1.11554e+09, 9.27357e+08] <3.49579e-07> (44.1006, 0.63%)
3.61% WpFoMgr::GetFirstRemoteFo() (DistSimMgt/WpFoMgr.C Line 1074) 252.317 [3.18726e+08, 2.64959e+08] <7.91641e-07> (12.6787, 0.18%)
0.70% WpDynFoSpline5Motion::UpdateEndAcceleration() (Utilities/Math/WpDynFoSpline5Motion.C Line 75) 49.1052 [1.27514e+08, 1.06003e+08] <3.85097e-07> (5.13279, 0.07%)
0.25% WpDynFoElliptical::operator()() (Utilities/Math/WpDynFoElliptical.C Line 694) 17.6185 [3.38511e+07, 2.8479e+07] <5.20469e-07> (19.0627, 0.27%)
0.20% WpObjectFactory::NewObject() (Utilities/Memory/WpObjectFactory.C Line 496) 14.2003 [3.18491e+07, 3.18491e+07] <4.45863e-07> (2.11485, 0.03%)
0.13% WpDynFoSpline5Motion::operator()() (Utilities/Math/WpDynFoSpline5Motion.C Line 280) 9.67974 [1.27514e+08, 1.06003e+08] <7.59113e-08> (70.8385, 1.01%)
0.04% WpDynFoSpline5Motion::Init() (Utilities/Math/WpDynFoSpline5Motion.C Line 35) 3.1931 [3.18491e+07, 2.6477e+07] <1.00257e-07> (19.8736, 0.28%)
0.03% WpTransObj::SetBuffer() (SomFomTranslation/WpTransObj.C Line 2147) 2.57793 [629115, 522864] <4.0977e-06> (0.180612, 0.00%)
0.03% WpDynFoSpline5Motion::operator()() (Utilities/Math/WpDynFoSpline5Motion.C Line 245) 2.32138 [3.18491e+07, 2.6477e+07] <7.28869e-08> (1.30032, 0.01%)
0.02% WpDynFoSpline5Motion::WpDynFoSpline5Motion() (Utilities/Math/WpDynFoSpline5Motion.C Line 20) 1.43394 [3.16893e+07, 2.63448e+07] <4.52502e-08> (1.39845, 0.02%)
0.01% WpCreateEventMsg() (EventManagement/WpScheduleEvent.C Line 39) 0.848932 [793927, 659221] <1.06928e-06> (0.117202, 0.00%)
0.00% WpTransObj::SetInt() (SomFomTranslation/WpTransObj.C Line 1332) 0.455884 [138863, 114941] <3.28297e-06> (0.11602, 0.00%)
0.00% WpScheduleEvent() (EventManagement/WpScheduleEvent.C Line 124) 0.414966 [793927, 659221] <5.22675e-07> (0.0895486, 0.00%)
0.00% WpTransObj::SetDouble() (SomFomTranslation/WpTransObj.C Line 1428) 0.260437 [138863, 114941] <1.8755e-06> (0.0566089, 0.00%)
0.00% WpMasterLogicalProcessMgr::GetLogicalProcessMgr() (EventManagement/WpMasterLogicalProcessMgr.C Line 373) 0.208985 [159830, 132203] <1.30754e-06> (0.0432057, 0.00%)
0.00% WpObjectFactory::GetObjectBytes() (Utilities/Memory/WpObjectFactory.C Line 273) 0.125647 [629115, 522864] <1.9972e-07> (0.927966, 0.01%)
0.00% WpLogicalProcessMgr_SCATTER::GetObjHandle() (EventManagement/WpLogicalProcessMgr.C Line 493) 0.0601497 [159830, 132203] <3.76335e-07> (0.0216146, 0.00%)
0.00% WpMasterLogicalProcessMgr::GetAlias() (EventManagement/WpMasterLogicalProcessMgr.C Line 418) 0.053575 [325318, 269504] <1.64685e-07> (0.0953867, 0.00%)
0.00% WpObjectFactory::GetObjectType() (Utilities/Memory/WpObjectFactory.C Line 260) 0.034981 [325318, 269504] <1.07529e-07> (0.0732112, 0.00%)
0.00% WpMasterLogicalProcessMgr::GetTypeId() (EventManagement/WpMasterLogicalProcessMgr.C Line 406) 0.00760078 [4982, 4154] <1.52565e-06> (0.00461864, 0.00%)
0.00% WpTransObj::GetDynamicPosition() (SomFomTranslation/WpTransObj.C Line 3596) 0.00405025 [1000, 1000] <4.05025e-06> (0.000102282, 0.00%)
0.00% WpObjectFactory::GetObjectTypeId() (Utilities/Memory/WpObjectFactory.C Line 224) 2.00272e-05 [14, 14] <1.43051e-06> (1.83582e-05, 0.00%)

--

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 67

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 68

CROSS-PLATFORM WIDGET SET FOR BUILDING GUIS,
3D/2D VISUALIZATION, AND ANALYSIS

CROSS-PLATFORM GUI TOOLS

•Main Tools
• Visualizer provides 2D and 3D playback visualization
• Analyzer provides mathematical data plotting and analysis
• Model Editor provides a graphical front end for developing models
• Scenario Editor with 2D canvas provides a graphical front end for composing systems of models

and specifying scenarios
• Messager GUI provides a time-ordering messaging service for parallel and distributed applications
• More… (performance report editor/calculator, performance forecaster, missile editor, etc.)

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 69

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 70

WORK PERFORMED ON THIS PHASE I NASA SBIR EFFORT

DISCRETE-EVENT VS. TIME STEPPING FOR BRUTE FORCE
N-BODY GRAVITATIONAL PROBLEMS

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 71

�⃗�!" =
𝑚!𝑚"𝐺

𝑅!"(𝑡)
𝑅!"(𝑡)

𝛿𝐹!" =
𝑚!𝑚"𝐺
𝑅!"#

3𝑣$ − 𝑣 𝛿𝑡

This graph shows the distribution for computational update
times between pairs of particles randomly distributed in a
circular planetary ring while holding the change in force
constant. Note that the horizontal axis representing the
natural update time per pair of particles is a log plot. The time
stepped approach computes most of the forces far more
often than necessary (i.e., computations to the right of the
time step), while not accurately supporting the very-tight time
scales (i.e., computations to the left of the time step), which is
often when the most interesting physics occurs.

Analysis of brute-force N-body gravitational computations for a planetary ring with 1,000 particles shows the following over-computation factors
for different time step cutoffs relative to the update time distribution. Time Step cutoffs (i.e., the area under the curve to the left of the time step)
at 1%, 10%, 25%, 50%, 75%, 90%, 99%, provide over-computation factors of 16404, 961, 229, 53, 13, 3, 0.2 respectively (note that the 99% cutoff
shows extreme under-computing, which would create very large systematic errors making results invalid). So, for 1,000 particles, traditional time
stepping at a 1% cutoff to hopefully produce accurate outputs does more than 4 orders of magnitude computations than needed

Time
Step

Large
Errors

Inefficient
Computations

It is better to hold the error tolerance constant and let time scales fluctuate than to hold time
scales constant and let error tolerances fluctuate…

DISCRETE EVENT IS FASTER AND MORE ACCURATE THAN TIME STEPPING

VISUALIZER – PLANETARY RINGS OF SATURN

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 72

ANALYZER - SATURN

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 73

PLANETARY RING PERFORMANCE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 74

185.119

9.55E+01

5.12E+01

2.59E+01

1.58E+01
1.01E+01

1 2 4 8 16 32

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Nodes

Planetary Ring: Run Time on 32-Core AMD Ryzen

0.000323226 0.000328868
0.000342591

0.000333628

0.000373168

0.000402685

1 2 4 8 16 32

Av
er

ag
e

Se
ct

or
 M

ot
io

n
Co

m
pu

ta
tio

n

Number of Nodes

Planetary Ring: Sector Motion Computation on 32-Core AMD Ryzen

1

1.938845191

3.612853491

7.152146196

11.74091457

18.35769536

1 2 4 8 16 32

Sp
ee

du
p

Number of Nodes

Planetary Ring: Speedup on 32-Core AMD Ryzen

1
1.972688275

3.829305471

7.382315257

13.55501602

22.87058762

1 2 4 8 16 32

Sp
ee

du
p

Number of Nodes

Planetary Ring: Adjusted Speedup on 32-Core AMD Ryzen

VISUALIZER – MISSILE DEFENSE WITH SPACE DEBRIS

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 75

SPACE DEBRIS PERFORMANCE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 76

454.886

2.11E+02

1.10E+02

5.92E+01

3.72E+01
2.59E+01

1 2 4 8 16 32

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Nodes

Space Debris: Run Time on 32-Core AMD Ryzen

0.000377401 0.000370237 0.000364459 0.000366111

0.000401879

0.000441527

1 2 4 8 16 32

Av
er

ag
e

Se
ct

or
 M

ot
io

n
Co

m
pu

ta
tio

n

Number of Federates

Space Debris: Closest Approach Computation on 32-Core AMD Ryzen

1

2.154448749

4.135853654

7.682587401

12.2123604

17.54690634

1 2 4 8 16 32

Sp
ee

du
p

Number of Nodes

Space Debris: Speedup on 32-Core AMD Ryzen

1
2.113552008

3.994025153

7.452761799

13.00444668

20.52838471

1 2 4 8 16 32

Ad
ju

st
ed

 S
pe

ed
up

Number of Nodes

Space Debris: Adjusted Speedup on 32-Core AMD Ryzen

RF SIGNAL PROPAGATION FOR ELECTRONIC WARFARE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 77

P11

Tx1

Tx2

P21

Tx3

P31

Tx3

P41

Rx1

Rx2

Rx3

Rx3

P12 P13

P22

P42 P43 P44

P23 P24

P14

P32 P33 P34

Time domain
signal summing

Compute transmission delay,
attenuation, multiple paths

Bursty data
transmission

RF SIGNAL PROPAGATION FOR ELECTRONIC WARFARE
PERFORMANCE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 78

62.408

3.04E+01

1.64E+01

9.97E+00
7.08E+00

4.85E+00

1 2 4 8 16 32

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Nodes

EwSignal: Run Time on 32-Core AMD Ryzen

1

2.052354644

3.802815185

6.258323305

8.813444429

12.86232481

1 2 4 8 16 32

Sp
ee

du
p

Number of Nodes

EwSignal: Speedup on 32-Core AMD Ryzen

1
1.990758948

3.592497317

6.785468279

13.57205192

23.42927245

1 2 4 8 16 32

Ad
ju

st
ed

 S
pe

ed
up

Number of Nodes

EwSignal: Adjusted Speedup on 32-Core AMD Ryzen

6.13E-06 5.94E-06 5.79E-06

6.64E-06

9.43E-06

1.12E-05

1 2 4 8 16 32

Av
er

ag
e

Ge
ne

ra
te

Bu
rs

ty
Si

nW
av

e
Co

m
pu

ta
tio

n

Number of Nodes

EwSignal: GenerateBurstySinWave on 32-Core AMD Ryzen

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

Sp
ee

du
p

Number of Nodes

Speedup for EwSignal Benchmark
120 Separately Transmitting and Receiving Moving Entities

Previous Benchmark Performed
at SPAWAR on 60 cores

ELLIPSOIDAL GRAVITY MODEL

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 79

X

Y

WGS84 Gravity
Model

Ellipsoidal gravity model
• Subtracts the enclosed

spherical mass (representing
central gravitational force

• Integrates remaining mass
cells at different spatial
locations

• Fits a high-order polynomial to
determine the additional
gravitational contribution to
the central force from the
spherical mass

ELLIPSOIDAL GRAVITY MODEL PERFORMANCE

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 80

244.622

1.24E+02

6.40E+01

3.33E+01

1.94E+01 1.19E+01

1 2 4 8 16 32

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Nodes

Gravity Model: Run Time on 32-Core AMD Ryzen

1
1.9782621

3.824178642

7.337126541

12.62923669

20.6341521

1 2 4 8 16 32

Sp
ee

du
p

Number of Nodes

Gravity Model: Speedup on 32-Core AMD Ryzen

FINAL THOUGHTS

•A Phase II effort will bring the WarpIV Kernel to the NASA supercomputing
community
• Training Materials (hands on, pre-recorded videos, future seminars)
• High Speed Communications
• Parallel Discrete Event Simulation Engine with advanced Modeling Framework
• Tons of software utilities (data structures, mathematical tools, memory management, etc.)
• Debug and Profiling Tools
• Cross-platform GUIs (Mac, Linux, Windows, UNIX)
• Parallel and Distributed Bit-Compressed Data Logging

•We are very interested in collaborating with the NASA supercomputing
community in areas of Science (scientific/mission models) and Technology
(framework) efforts…
• Install the WarpIV Kernel on NASA HPC Supercomputers
• Distribute the WarpIV Kernel to users on laptops, desktops, etc.
• Need endorsements to continue in Phase II

1/28/21 WarpIV Kernel - NASA Phase I SBIR Effort 81

QUESTIONS

WarpIV Kernel - NASA Phase I SBIR Effort 821/28/21

